Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

How many grams of calcium phosphate can be produced when 89.3 grams of calcium chloride reacts with excess sodium phosphate? Unbalanced equation: CaCl2 + Na3PO4 → NaCl + Ca3(PO4)2 Show, or explain, all of your work along with the final answer.

Chemistry
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Balanced equation: \[3CaCl_{2}+2Na_{3}PO_{4} \rightarrow 6NaCl+Ca_3(PO_4)_2\] Ca = 40.08g Cl = 35.45g Na = 11.99g P = 30.97g O = 16.00g It takes 3 moles of Calcium Chloride to produce 1 mole of Calcium Phosphate. \[\frac {1 \space mole \space CaCl_2}{(40.08 g \space Ca+(2\times35.45g \space Cl_2))} \times \frac{89.3g\space CaCl_2}1=0.805 \space moles\] \[\frac {3 \space moles \space CaCl_2}{1 \space mole \space Ca_3(PO_4)_2}=\frac{0.805 \space moles \space CaCl_2}{x \space moles \space Ca_3(PO_4)_2}\] \[3.00x =0.805\times1 \rightarrow x=\frac{0.805}{3.00} \rightarrow x=0.268\space moles \space Ca_3(PO_4)_2 \] \[89.3g \space of \space CaCl_2 \space will \space produce \space 72.45g \space of \space Ca_3(PO_4)_2\]
This is such a nice answer, I wish I could give it many medals more. Espex, good job on that. Yaaimconfused, please do give them a medal. This is another limiting reagent problem. There are others on this group so try to work them out as well. None of the solutions are as elegantly displayed as this one!!!
i agree with preetha..

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question