Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

missyfredtom

  • 3 years ago

i really need someone to help me

  • This Question is Closed
  1. Safari321
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    WITH WHAT?

  2. missyfredtom
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    integrals and reimann sums

  3. Safari321
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    A function does not have to be continuous in order for it to be Riemann integrable. However, the one-way implication is true: every continuous real-valued function on a closed interval [a,b] is Riemann integrable there. The converse to this is false. However, I did not (I hope!) claim that Riemann integrable functions must be continuous. - Whenever f is a bounded real-valued function on [a,b], then you can define the Riemann upper sums and the Riemann lower sums for f. This does not work if the function f is unbounded, though. For example, if the function f is, say, 1/x for x not equal to 0, but f(0)=0, then you can not define Riemann lower/upper sums for f on [-1,1]. - Even when f is a bounded, real-valued function on [a,b], you can have problems. For example, if the function f(x) is defined to be 1 when x is rational but 0 when x is irrational, and you try to find the Riemann integral on the interval [0,2], say, then all of the Riemann upper sums come out to be 2, while the Riemann lower sums are all 0. As a result, the Riemann upper integral is 2, and the Riemann lower integral is 0. Since these are different, the Riemann integral does not exist here, and f is not Riemann integrable on [0,2].

  4. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.