anonymous
  • anonymous
Using the replacement set, find the solutions for the equation. y = 0.5x + 10 Replacement Set: {(-2, 9.5), (0, 10),(3, 11.5),(4, 13)}
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
(0, 10),(3, 11.5)
anonymous
  • anonymous
I'm not 100% clear on what a replacement set is, never studied it myself. My brief amount of research tells me that the elements in the replacement set are possible solutions of the equation, and you have to determine if they make the cut, so to speak. For example, take the point (-1, 5), that's (x,y). Try out the value of x, and see if you get the correct y: \[y=0.5(-1)+10=9.5\]\[9.5\neq5\], therefore (-1, 5) is not a solution (but (-1, 9.5) is for future reference). Try the point (2, 11), i.e. x=2, y=11: \[y=0.5(2)+10=11\]\[11=11\], therefore (2,11) is a solution.
anonymous
  • anonymous
"a" is a list of Mathematica, brace delimited, replacement rules. a = {{x -> -2, y -> 9.5}, {x -> 0, y -> 10}, {x -> 3, y -> 11.5}, {x -> 4, y -> 13}} y == 0.5x + 10 /. a yields the following: {False, True, True, False} "/." means apply the replacement rules labeled "a"

Looking for something else?

Not the answer you are looking for? Search for more explanations.