anonymous
  • anonymous
what is the laplace inverse of (s^4+6s-18)/(s^5-3s^4)?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
use partial fractions and take s^4 common from denomiator it will be easy to solve
anonymous
  • anonymous
and then use the formulae that laplace inverse of 1/s = 1 and laplace inverse of 1/s^2= t etc and laplace inverse of 1/s-3= \[e^{3t}\]
anonymous
  • anonymous
the answer is (e^(3t) )+t^3

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
would you please give me the solved question
anonymous
  • anonymous
do you know how to make partial fractions??
anonymous
  • anonymous
yes
anonymous
  • anonymous
then use partial fractions and it will be easy use the formulae i mentiond above
anonymous
  • anonymous
is it form bsc?? methods
anonymous
  • anonymous
s^4+6s-18=A/s+B/s^2+C/s^3+D/s^4+E/s-3
anonymous
  • anonymous
yes right and then find A,B,C,D,E AND IT WILL BE 101 PERCENT SIMPLE
anonymous
  • anonymous
ok thanks alot

Looking for something else?

Not the answer you are looking for? Search for more explanations.