Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Find all integers n such that (28.5)^n + (99.5)^n is an integer.

Meta-math
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

I think it is true for every odd integer and zero, of course! but I am finding it hard to prove it :/
hint: express the decimals into fractions
they are odd integers, but not all of them

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

One thing I have noticed that if we end up with '.50' as fractional part, We get an Integer as ".5+.5=1"
\[(\frac{57}{2}) ^n + (\frac{199}{2}) ^n \]
Hmm I did the fractions way too \[\left(\frac{57}{2}\right)^n + \left(\frac{199}{2}\right)^n \implies \frac{(57)^n + (199)^n}{2^n}\] Now one can easily see it's valid for n = 1 and 0
You know that 57^n + 199^n must be an integer multiple of 2^n
Yeah...
So now you need to prove that whether n is odd or even
Hmm Okay \[(57)^n + (199)^n = K*2^n\] Now \(odd^n \) should be always odd.The LHS is always even as odd + odd = even. \(2^n\) is always even too Now for RHS to be even K should be even as well
ugh I need to think now, I messed up somewhere :/
ok i got to go
Bye, Thanks for the Help :-)
If we rearrange the expression as:\[(\frac{57}{2})^n+(\frac{199}{2})^n\]then as @Ishaan94 pointed out, we can go on to get this equation:\[57^n+199^n=\text{constant} * 2^n\]so we need to prove that \(57^n+199^n\) is divisible by \(2^n\). I then noticed that \(199=256-57=2^8-57\) and took advantage of this to get:\[57^n+(2^8-57)^n\]and using the binomial expansion we get:\[ \begin{align} (2^8-57)^n&=(2^8)^n-(2^8)^{n-1}.57+…+(-1)^{n-1}.(2^8).57^{n-1}+(-1)^n.57^n\\ &=2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})+(-1)^n.57^n\\ \therefore 57^n+(2^8-57)^n&=57^n+2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})+(-1)^n.57^n\\ &=57^n+(-1)^n.57^n+2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})\\ &=57^n(1+(-1)^n)+2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})\\ \end{align}\]the first expression \(57^n(1+(-1)^n)\) is always zero for odd values of 'n' and is not divisible by \(2^n\) for even values of 'n'. the second expression \(2^8(...)\) is always divisible by \(2^n\) for \(n=0…8\). so, combining the two conditions, we get the solution as:\[n=0,1,3,5,7\]
Good job
@moneybird - do you have the actual proof for this and does my proof match up to it?
you know that n must be an odd number because let n be 2m \[(57^{m})^{2} + (199^{m})^{2} = constant * 2^n\] odd integer = 2k + 1 square of an odd (2k + 1)^2 = 4 (k^2 + k) + 1 so sum of two squares of odd must be 2 more than the multiple of 4. 2^n is divisble by for n is greater or equal to 2 So n must be an odd number \[57^n + 199^n = (57 + 199) (57^{n-1} - 199 *57^{n-2} ... + 199^{n-1})\] 57 + 199 = 256 57^n + 199^n is divisble by 256 \[\frac{256}{2^n} = q\] where q is an integer n can only be 0, 1, 3, 5 and 7
nice proof - a lot simpler

Not the answer you are looking for?

Search for more explanations.

Ask your own question