anonymous
  • anonymous
Find all integers n such that (28.5)^n + (99.5)^n is an integer.
Meta-math
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I think it is true for every odd integer and zero, of course! but I am finding it hard to prove it :/
anonymous
  • anonymous
hint: express the decimals into fractions
anonymous
  • anonymous
they are odd integers, but not all of them

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
One thing I have noticed that if we end up with '.50' as fractional part, We get an Integer as ".5+.5=1"
anonymous
  • anonymous
\[(\frac{57}{2}) ^n + (\frac{199}{2}) ^n \]
anonymous
  • anonymous
Hmm I did the fractions way too \[\left(\frac{57}{2}\right)^n + \left(\frac{199}{2}\right)^n \implies \frac{(57)^n + (199)^n}{2^n}\] Now one can easily see it's valid for n = 1 and 0
anonymous
  • anonymous
You know that 57^n + 199^n must be an integer multiple of 2^n
anonymous
  • anonymous
Yeah...
anonymous
  • anonymous
So now you need to prove that whether n is odd or even
anonymous
  • anonymous
Hmm Okay \[(57)^n + (199)^n = K*2^n\] Now \(odd^n \) should be always odd.The LHS is always even as odd + odd = even. \(2^n\) is always even too Now for RHS to be even K should be even as well
anonymous
  • anonymous
ugh I need to think now, I messed up somewhere :/
anonymous
  • anonymous
ok i got to go
anonymous
  • anonymous
Bye, Thanks for the Help :-)
asnaseer
  • asnaseer
If we rearrange the expression as:\[(\frac{57}{2})^n+(\frac{199}{2})^n\]then as @Ishaan94 pointed out, we can go on to get this equation:\[57^n+199^n=\text{constant} * 2^n\]so we need to prove that \(57^n+199^n\) is divisible by \(2^n\). I then noticed that \(199=256-57=2^8-57\) and took advantage of this to get:\[57^n+(2^8-57)^n\]and using the binomial expansion we get:\[ \begin{align} (2^8-57)^n&=(2^8)^n-(2^8)^{n-1}.57+…+(-1)^{n-1}.(2^8).57^{n-1}+(-1)^n.57^n\\ &=2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})+(-1)^n.57^n\\ \therefore 57^n+(2^8-57)^n&=57^n+2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})+(-1)^n.57^n\\ &=57^n+(-1)^n.57^n+2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})\\ &=57^n(1+(-1)^n)+2^8(2^n-2^{n-1}.57+…+(-1)^{n-1}.57^{n-1})\\ \end{align}\]the first expression \(57^n(1+(-1)^n)\) is always zero for odd values of 'n' and is not divisible by \(2^n\) for even values of 'n'. the second expression \(2^8(...)\) is always divisible by \(2^n\) for \(n=0…8\). so, combining the two conditions, we get the solution as:\[n=0,1,3,5,7\]
anonymous
  • anonymous
Good job
asnaseer
  • asnaseer
@moneybird - do you have the actual proof for this and does my proof match up to it?
anonymous
  • anonymous
you know that n must be an odd number because let n be 2m \[(57^{m})^{2} + (199^{m})^{2} = constant * 2^n\] odd integer = 2k + 1 square of an odd (2k + 1)^2 = 4 (k^2 + k) + 1 so sum of two squares of odd must be 2 more than the multiple of 4. 2^n is divisble by for n is greater or equal to 2 So n must be an odd number \[57^n + 199^n = (57 + 199) (57^{n-1} - 199 *57^{n-2} ... + 199^{n-1})\] 57 + 199 = 256 57^n + 199^n is divisble by 256 \[\frac{256}{2^n} = q\] where q is an integer n can only be 0, 1, 3, 5 and 7
asnaseer
  • asnaseer
nice proof - a lot simpler

Looking for something else?

Not the answer you are looking for? Search for more explanations.