Here's the question you clicked on:
anilorap
need help with heavy stuff. I am defining the derivative as a linear transformation between tangent spaces. so im defining tangent spaces which i need to prove the ten axioms.. need help please
what u mean elaborate?
"I am defining the derivative as a linear transformation between tangent spaces. so im defining tangent spaces which i need to prove the ten axioms" does it make any sense to you?
tangent space as a set of linear approximation of all tangent vectors
tangent vector can be defined at a point in a vector space, as a order of n-tuples v_p= 〖{a_(1,)…,a_(n,)}〗_p in which exist a parameterized curve c:I→R^n which derivative at 0 have the property c(0)=p and c^' (0)=v_p=〖{a_(1,)…,a_(n,)}〗_p.
Because in the world of tangent spaces we are working with the properties of vector spaces, vectors in the tangent spaces must satisfy the two operations: i) Vector addition. ii) Scalar multiplication and 10 axioms.
the first one, i need to prove that when i take two vector spaces in a tangent space and i add them, their sum must be also in the tangent space
so you have to prove all ten?
yea **crying** i have the idea... but no the knowledge
oh wow.. imagine my level.. i am not even in a four year school
i made this class honor,, and now im dying
oh wow.... well thanks for trying tho
cooal stuff there, if only i had no reason to celebrate life would i go to wikipedia and sit for the next 2 hours to grasp what tangent spaces are and answer your question
but that certainly is not the case so sorry , http://maths.stackexchange.com/
PS did u check that site PSS my name is stom, without any r
yes... what is this site about?
I thought there are only 8 axioms to verify a vector space, four for addition and four for multiplication. Can you tell me the two others?
if u and v are in W then u + v is in W if u is in W and k is any scalar then ku is in W
that site is about asking hard question in maths
So you must have worked on other vector spaces before, have you started on the axioms yet? Which one(s) do you have problems with?
i didnt start yet.. i dont know how... because they are not vector spaces anymore,,, they are tangent spaces
How is the tangent space defined?
Can you give examples of some vectors as per the definition? Does the zero vector exist? Does the negative vector exist? Is the zero vector in the space?
oh wow those are the axioms....if i could give u examples i will be able to prove
How do you define the tangent vectors, by directional derivatives?
I suggest you repost as: "linear transformation between tangent spaces" and perhaps someone else can better spot your post.