Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Question on integration by parts

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
When integrating \[\int\limits_{0}^{1} xe^{-x}dx\] is the answer \[-2/e -1\] or\[1-2/e\]
1-2/e
I keep getting \[-2/e-1\] but Wolfram says its the opposite

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

if you did the int by parts correctly, you should only arrive at one solution ... how did you go about this?
e^-x x -e^-x: -x e^-x -1 e^-x : -e^-x 0 -e^-x : 0 I get: -x e^(-x) - e^(-x) if i did it right
oh, then 0 to 1 lol
let u =x dv=e^(-x)dx du=dx v=-e^(-x) =>-xe^(-x)-e^(-x) on limits the ans is -1/e-1/e-1=-2/e-1
-1 e^(-1) - e^(-1) + 0 e^(-0) + e^(-0) \[-\frac{1}{e}-\frac{1}{e}+0+1\] \[-\frac{2}{e}+1\]
the algebra is the killer in most cases
\[u=x\] \[du=dx\] \[v=-e^{-x}\] \[dv=e^{-x}\] \[\int\limits_{0}^{1} xe^{-x}dx=-xe^{-x}|_{0}^{1} + \int_{0}^{1}e^{-x}dx\] \[\int\limits_{0}^{1} xe^{-x}dx=-1e^{-1} + -e^{-x}|_{0}^{1}\] \[\int\limits_{0}^{1} xe^{-x}dx=-e^{-1} + -e^{-1}+1\] \[\int\limits_{0}^{1} xe^{-x}dx=-2e^{-1}+1\]
@Hunus your integrand is positive (on (0,1)) ...your answer is negative...this tells you you are not correct.
Yea, I see where I went wrong on the \[-e^{-x}|_{0}^{1}\] I put -e^-1 - 1 instead of -e^-1 -(-1)

Not the answer you are looking for?

Search for more explanations.

Ask your own question