Hunus
  • Hunus
Question on integration by parts
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Hunus
  • Hunus
When integrating \[\int\limits_{0}^{1} xe^{-x}dx\] is the answer \[-2/e -1\] or\[1-2/e\]
anonymous
  • anonymous
1-2/e
Hunus
  • Hunus
I keep getting \[-2/e-1\] but Wolfram says its the opposite

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
if you did the int by parts correctly, you should only arrive at one solution ... how did you go about this?
amistre64
  • amistre64
e^-x x -e^-x: -x e^-x -1 e^-x : -e^-x 0 -e^-x : 0 I get: -x e^(-x) - e^(-x) if i did it right
amistre64
  • amistre64
oh, then 0 to 1 lol
anonymous
  • anonymous
let u =x dv=e^(-x)dx du=dx v=-e^(-x) =>-xe^(-x)-e^(-x) on limits the ans is -1/e-1/e-1=-2/e-1
amistre64
  • amistre64
-1 e^(-1) - e^(-1) + 0 e^(-0) + e^(-0) \[-\frac{1}{e}-\frac{1}{e}+0+1\] \[-\frac{2}{e}+1\]
amistre64
  • amistre64
the algebra is the killer in most cases
Hunus
  • Hunus
\[u=x\] \[du=dx\] \[v=-e^{-x}\] \[dv=e^{-x}\] \[\int\limits_{0}^{1} xe^{-x}dx=-xe^{-x}|_{0}^{1} + \int_{0}^{1}e^{-x}dx\] \[\int\limits_{0}^{1} xe^{-x}dx=-1e^{-1} + -e^{-x}|_{0}^{1}\] \[\int\limits_{0}^{1} xe^{-x}dx=-e^{-1} + -e^{-1}+1\] \[\int\limits_{0}^{1} xe^{-x}dx=-2e^{-1}+1\]
Zarkon
  • Zarkon
@Hunus your integrand is positive (on (0,1)) ...your answer is negative...this tells you you are not correct.
Hunus
  • Hunus
Yea, I see where I went wrong on the \[-e^{-x}|_{0}^{1}\] I put -e^-1 - 1 instead of -e^-1 -(-1)

Looking for something else?

Not the answer you are looking for? Search for more explanations.