Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Find the non-negative number of c.

Meta-math
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[f(n) = (1 - \frac{1}{2})(1 - \frac{1}{2^{2}})(1 - \frac{1}{2^{3}}) ... ((1 - \frac{1}{2^{n}})\] Find and prove a non-negative number "c" such that f(n) > c for all n
c cannot be the largest c that will work, nor anywhere near it.
What do you mean by c cannot be the largest c that will work, nor anywhere near it ? If we compute the product like this: http://www.wolframalpha.com/input/?i=product+from+1+to+infinity+of+%281-1%2F2^%28n%29%29 we see it "converges" to: 0.288788095086602421278899721929 so if we must choose a c value, it can be anywhere between 0 and 0.288788095086602421278899721929 Or am I misreading things?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The question was given that P(n) is always greater than 0.288. I am not really sure either

Not the answer you are looking for?

Search for more explanations.

Ask your own question