vishal_kothari
  • vishal_kothari
Prove that, up to congruence, there are exactly three right triangles whose side lengths are integers while the area is twice the perimeter..........
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Hero
  • Hero
Instead of posting all these questions, just get the book: 100% Mathematical Proof
vishal_kothari
  • vishal_kothari
thanks...
vishal_kothari
  • vishal_kothari
from where i could get this book...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Hero
  • Hero
Pretty sure you can find it on amazon.com. If not, let me know
vishal_kothari
  • vishal_kothari
ya i got it... can you suggest me some more books...
Hero
  • Hero
For proofs, that'll be the only one you'll need.
Hero
  • Hero
But if you want more, just go to amazon and research "proofs" in books
vishal_kothari
  • vishal_kothari
but it's quite expensive..
Hero
  • Hero
That's why I'm going to give you this: http://www.worldcat.org/
vishal_kothari
  • vishal_kothari
it's good ...thanks..

Looking for something else?

Not the answer you are looking for? Search for more explanations.