anonymous
  • anonymous
sum_(k=1)^6-3(2)^k-1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sum_{k=1}^6{3(-2)^k-1}\] The -1 is up with the k. Find the indicated sum of the geometric series.
anonymous
  • anonymous
\[\sum_{k=1}^6{3(-2)^{k-1}}\]
anonymous
  • anonymous
Find the indicated sum of the geometric series.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
with so few terms i would just add them
anonymous
  • anonymous
How so? And I messed up. It is -3(2). Sorry
anonymous
  • anonymous
\[\sum_{k=1}^6{3(-2)^{k-1}}=3\sum_{k=1}^6{(-2)^{k-1}}\] \[=3(1-2+4-8+16-32)\]
anonymous
  • anonymous
\[\sum_{k=1}^6-3(2)^{k-1}\]
anonymous
  • anonymous
like that?
anonymous
  • anonymous
yes
anonymous
  • anonymous
\[\sum_{k=1}^6-3(2)^{k-1}=-3\sum_{k=1}^6(2)^{k-1}\]
anonymous
  • anonymous
\[-3\sum_{k=1}^6(2)^{k-1}=-3(1+2+4+8+16+32)=-3(63)\] if my arithmetic is correct
anonymous
  • anonymous
Yes! Thank you so much satellite73!!!! :)
anonymous
  • anonymous
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.