Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Difference between an oblique and horizontal asymptote?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if numerator is one degree larger than denominator you have oblique asymtote
how do you find the horizontal asymptote/oblique?
horizontal is very easy. if you have same degree numerator and denominator , just divide the coeficcient 4x^2 -------------- = > 4/2 = > horizontal retricemtote=> y=2 2 x^2

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

what about vertical? thanks so much!!
vertical or oblique?
I need to know both haha -
Vertical for vertical asymtote , look for where function is inderminant(0 in denominator) (x^2-3x) ------------ (x-5) in this case when x=5 , denominator is 0 which makes function inderminant so vertical asymtote x=5
Oblique when numerator is one degree bigger than denominator (x^3+x^2+x+1)/(x^2+x+1) use long division to divide it out http://www4b.wolframalpha.com/Calculate/MSP/MSP53619icgb4di5hgchfe00003fc2e54f7d06c4a5?MSPStoreType=image/gif&s=21&w=204&h=131 y=x is our oblique asymtote

Not the answer you are looking for?

Search for more explanations.

Ask your own question