PaxPolaris
  • PaxPolaris
Double Integration Question originally asked by Jyqft: http://openstudy.com/updates/4ef626d7e4b01ad20b50b455 My Integration is a bit rusty, but I found this problem interesting... Could some show me step by step how you get to the answer? From the discussion I understood so far (hope I got it right): \[\int\limits\limits_1^2\int\limits\limits_0^{\frac{2-x}{2}} e^{y-y^2} dy dx\] \[=\int\limits\limits_0^{1/2}\int\limits\limits_0^{2-2y} e^{y-y^2} dx dy\]
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Mr.Math
  • Mr.Math
The new limits are not correct. dx should be between 1 and 2-2y.

Looking for something else?

Not the answer you are looking for? Search for more explanations.