Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Find the parametric representation for the surface: The part of the sphere x^2 + y^2 +z^2 = 4 that lies above the cone z= sqrt(x^2 + y^2).

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
You can use spherical coordinates.
\[x=2\sin\phi \cos\theta\] \[y=2\sin\phi\sin\theta\] \[z=2\cos\phi\] \[0\le \phi\le \pi \text{ and } 0\le \theta \le \pi\]
Mr. Math, I have to ask, would you not use: \[x=2\sin(\phi)\cos(\theta); y=2\sin(\phi)\sin(\theta); z=2\cos(\phi); 0 \le \phi \le \frac{\pi}{4}; 0 \le \theta \le 2 \pi\] Because the cone creates a 45 degree angle in the first quadrant of the x-y plane. So the phi angle (defined from the positive x-axis would only go down TO THE CONE, not the entire pi which would give you the whole sphere. It says above the cone, so would it be to pi/4?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question