anonymous
  • anonymous
whats the value of Pi?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
3.14....
anonymous
  • anonymous
About 3,14159265
anonymous
  • anonymous
nobody has calculated it correctly so far..

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
C/d
anonymous
  • anonymous
It depends really. Normally it is 3.14 in high school and such but the closer you want to get to a value using Pi the more decimals you want. More decimals = more accurate.
anonymous
  • anonymous
circumference/diameter
amistre64
  • amistre64
\[\int^{\infty}_{1}\frac{1}{x}\ dx\]
anonymous
  • anonymous
Exact value of pi \[4\sum _{n=0}^{\infty } (-1)^n\frac{1}{2n+1}=\pi\]
amistre64
  • amistre64
ohhh... pretty :)
anonymous
  • anonymous
pi = c/d
anonymous
  • anonymous
http://en.wikipedia.org/wiki/Pi http://mathworld.wolfram.com/Pi.html
anonymous
  • anonymous
Pi = a baked food with a Yummmmmy filling :-)
anonymous
  • anonymous
|dw:1325784689041:dw|
anonymous
  • anonymous
Mindflutter
anonymous
  • anonymous
\[\large \quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad \frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum^\infty_{k=0} \frac{(4k)!(1103+26390k)}{(k!)^4 396^{4k}} \]
anonymous
  • anonymous
Guess who gave this summation?
anonymous
  • anonymous
I want to understand stuff like that :(

Looking for something else?

Not the answer you are looking for? Search for more explanations.