anonymous
  • anonymous
The price of movie tickets has increased over time with inflation. Let's let the equation y = 0.50(1.06)x represent the price of movie tickets for the years after 1950. Using this equation, fill in the following T-table for the years 1950, 1960, 1970, 1980, and 1990. Use X = 0, 10, 20, 30, and 40 to represent these years (the number of years after 1950). Then type in your answers in the space given. A table where the top row or x represents number of years after 1950 and the bottom row or y represents Ticket Price in dollars. X = 0 10 20 30 40
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
If we make a function \[f(x)=0.5(1.06)^{x}\] and then solving for each of the values we'll get: 1950 - f(0)=0.5 $ 1960 - f(10)= 0.9 $ 1970 - f(20)= 1.6 $ 1980 - f(30)= 2.9 $ 1990 - f(40)= 5.4 $ You can look at the graph here: http://www.wolframalpha.com/input/?i=0.5%281.06%29^x+x+from+0+to+40
anonymous
  • anonymous
To clarify, when i write 1950 - f(0) the "-" does not represent a minus.
anonymous
  • anonymous
I FOUND YOU! ive been looking for you :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.