anonymous
  • anonymous
prove the identity \[\left( \cos x \over 1 +\sin x \right)=\left( 1-\sin x \over \cos x \right)\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
LHS/RHS=1
anonymous
  • anonymous
because cos x cos x = 1- sin x sin x
Mr.Math
  • Mr.Math
By multiplying the left hand side by 1-sinx, we get \[{\cos{x}(1-\sin{x}) \over 1-\sin^2{x}}={\cos(x)(1-\sin(x) \over \cos^2(x)}={1-\sin{x} \over \cos{x}}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mr.Math
  • Mr.Math
Which is what we have on the right hand side obviously.
anonymous
  • anonymous
that was simple. thanks.
Mr.Math
  • Mr.Math
It is simple! :)
anonymous
  • anonymous
Yifan you help me so much! and I really appreciate it, but many of times I don't understand the way you teach.. I am sorry. :S
Mr.Math
  • Mr.Math
His argument is not that difficult, he's using that if a=b\(\ne\)0, then a/b=1.
anonymous
  • anonymous
actually i should use LHS-RHS=0 to prove that

Looking for something else?

Not the answer you are looking for? Search for more explanations.