anonymous
  • anonymous
prove the identity: \[\cos x + \sin x \tan x \over \sin x \sec x \] = csc x
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
LHS=(cosx +sinx tanx)*cosx / sinx secx cosx =(cos^2 x +sin^2 x) / sinx =1/sinx=cscx
anonymous
  • anonymous
i think this one is easier to understand :)
anonymous
  • anonymous
I don't understand, I feel so dumb.. why did you multiply deno and numerators by cos x and how you've got cos^2x+sin^2x over sinx

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
because tanx cosx=sinx, secx cosx=1 multiply cos x makes LHS simpler
myininaya
  • myininaya
\[\frac{\cos(x)+\sin(x) \cdot \frac{\sin(x)}{\cos(x)}}{\sin(x) \cdot \frac{1}{ \cos(x)}} \cdot \frac{\cos(x)}{\cos(x)}=\frac{\cos^2(x)+\sin^2(x)}{\sin(x) }=\frac{1}{\sin(x)}=\csc(x)\] This is exactly what Yifan did, but I think it looks better in latex ;) Good work Yifan
anonymous
  • anonymous
Yifian: woot that was so simple! thanks! haha thanks myinninaya :)
anonymous
  • anonymous
when you meet tanx secx cscx, substitute them with sinx/cosx, 1/cosx, 1/sinx, to make the problem simpler:)
anonymous
  • anonymous
got it (:

Looking for something else?

Not the answer you are looking for? Search for more explanations.