test the differentiability of the function at x=0 F(x)= {x*sin(1/x)if x≠0 and 0 if x=0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

test the differentiability of the function at x=0 F(x)= {x*sin(1/x)if x≠0 and 0 if x=0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

It is not differentiable. you can check that the function is continous. Applyinf frist principle \[f \prime(0)=\lim_{h \rightarrow 0}(f(h)-f(0))/h=hsin(1/h)/h=\sin1/h\] sin1/h is undefined as h tends to 0 hence it is not differentiable.
but can't we say 1/h->infinity
Yeah since 1/h->infinty the limit sin(1/h) and subsequently f'(0) is undefined.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

If you have x^a sin(1/x) it is differentiable at x=0 only for a>1 for an integer a am not sure for fractional a value.
The derivative exists at x=0 if the limit of the difference quotient \[ \frac{f(h) - f(0)}{h} = \sin(1/h) \] as h -> 0 exists. But it doesn't exist because \[ \lim_{h \rightarrow 0} \sin(1/h) \] doesn't exist. Instead, as h approaches 0, from either above or below, sin(1/h) oscillates faster and faster between -1 and 1. If it had a limit, L say, then we could make sin(1/h) as close as we liked to L by making h sufficiently close to zero. But on the contrary, for any restriction of h close to zero, sin(1/h) assumes infinitely many values between -1 and 1.

Not the answer you are looking for?

Search for more explanations.

Ask your own question