S
  • S
By inspection, find a one parameter family of solutions of the differential equation xy' = 4y. Verify that each member of its family also satisfies the initial condition y(0) = 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
x y' -4y=0 y' - 4/x y=0 now we can better inspect
S
  • S
Ok thanks i get it so far, but I'm confused by the wording.. one parameter family.. i'm not sure where to go from there
anonymous
  • anonymous
since it say inspection, I don't think we have to try ti solve it

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
When they say by inspection, they mean just try to see through the problem to the solution without any serious work. It can be done. Note: \[ x y' - 4y = 0 \rightarrow xy' = 4y\] So taking the derivative of the function and multiplying by x is the same as multiplying the function by 4. To me, this suggests something of the form \[ y = A x^4\] where a is an arbitrary constant.
anonymous
  • anonymous
A*
S
  • S
OOo i think i get it now thank you!
anonymous
  • anonymous
The full solution, in contrast, is the following: \[ xy' - 4y = 0\] \[ y' - \frac{4}{x} y = 0\] Introduce an integrating factor \[e^{\mu(x)} \] so \[[ye^{\mu(x)} ]' = y'e^\mu + \mu'ye^\mu\] Identifying \[ \mu'e^\mu = -\frac{4}{x}e^\mu \rightarrow \mu = e^{-4 \ln(x)} = e^{\ln(x^{-4})} = x^{-4} \] So multiplying through and grouping together, \[ [x^{-4}y]' = 0\] so \[ x^{-4}y = A\] and finally \[y =Ax^4\] That would be showing all the rigorous work... what we did is called by inspection, or just looking at it ;)
S
  • S
Alright that explains it, thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.