At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

You mean out of a shape?

yes, curved hexagon

curved hexagon O.o

do you mean a circle with an inscribed hexagon?

no not really, its hard to explain , sorry

just draw it :-P

inch by inch

that's how you normally approximate it, right

|dw:1326317247010:dw|

as you make the change in x smaller and smaller you get a better approximation

when you get to the infinitesimal level; the change in x and y are dx and dy

\[\int_{a}^{b}\sqrt{dx^2+dy^2}\ ds\]

...curved hexagon? hmm

thank you for your help

right; use amistre's formula to approximate the length of curves and arcs in graphs.