anonymous
  • anonymous
I am looking for solution step by step for this integral, I know what the answer is. \[\int\limits_{0}^{\infty}\frac{x ^{3}}{e ^{x}-1}dx=\frac{\pi ^{4}}{15}\]
Calculus1
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
I am looking for solution step by step for this integral, I know what the answer is. \[\int\limits_{0}^{\infty}\frac{x ^{3}}{e ^{x}-1}dx=\frac{\pi ^{4}}{15}\]
Calculus1
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

JamesJ
  • JamesJ
*bookmark. Going to bed now, but I'll write this out for you tomorrow. Nice question.
anonymous
  • anonymous
tell me about it, it is really hard..
JamesJ
  • JamesJ
Ok... \[ \int_0^\infty \frac{x^3}{e^x - 1} dx = \int_0^\infty \frac{x^3e^{-x}}{1-e^{-x}} \] \[ = \int_0^\infty \sum_{n=0}^\infty x^3 e^{-(n+1)x} dx \] \[ = \sum_{n=0}^\infty \int_0^\infty x^3 e^{-(n+1)x} dx \] Changing variable \( u = (n+1)x \), this is equal to \[ \sum_{n=0}^\infty \int_0^\infty \frac{u^3}{(n+1)^4} e^{-u} du \] \[ = \sum_{n=0}^\infty \frac{1}{(n+1)^4} \Gamma(4) \ \hbox{, by definition of the Gamma function }\] \[ = 6 \ \sum_{n=1}^\infty \frac{1}{n^4} \ \ \ \ \ \hbox{, as } \Gamma(4) = 3! = 6 \] \[ = 6 \ \frac{\pi^4}{90} \ = \ \frac{\pi^4}{15} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

JamesJ
  • JamesJ
We can now generalize this to \[ \int_0^\infty \frac{x^t}{e^x - 1} dx = \Gamma(t+1)\zeta(t+1) \]
anonymous
  • anonymous
actually, my question contains \[\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n ^{s}}\] \[\zeta(4)=1+\frac1{2^{4}}+\frac1{3^{4}}+\frac1{3^{4}}...=\frac {\pi ^{4}}{90}\] how it is solution..
anonymous
  • anonymous
I did not understand how passed this step \[= \int\limits_0^\infty \sum_{n=0}^\infty x^3 e^{-(n+1)x} dx\]
JamesJ
  • JamesJ
\[ \frac{1}{1-x} = 1 + x + x^2 + x^3 + ... \] provided |x| < 1. As for \( x \in (0, \infty) \) we have \( 0 < e^{-x} < 1 \), \[ \frac{e^{-x}}{1-e^{-x}} = e^{-x} ( 1 + e^{-x} + e^{-2x} + e^{-3x} + ...) \] \[ = e^{-x} + e^{-2x} + e^{-3x} + e^{-4x} + ... \]
JamesJ
  • JamesJ
does this make sense now?
anonymous
  • anonymous
yes it does, I am still waiting for \[\zeta(4)=\frac {\pi^4}{90}\]
JamesJ
  • JamesJ
I see. Let me try and find one of the more elementary proofs.

Looking for something else?

Not the answer you are looking for? Search for more explanations.