anonymous
  • anonymous
integrate sin(tan^-1x)/(1+x^2). please help with the steps
Mathematics
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Set u=arctan(x), so that du= 1/(1+x^2). Thus, using this u-substitution, the integral is equivalent to the integral of sin(u). Since the integral of sin(u) is -cos(u)+C, the final answer is just \[\sin (\tan^{-1} (x))+C\] Note also that sin(arctan(x)) is the same as \[x/\sqrt{x^2+1}\] So that function plus your constant of integration is also a correct solution.
anonymous
  • anonymous
Sorry, it should be \[-\cos (\tan^{-1} (x))+C\]
anonymous
  • anonymous
thanx

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Also, that means that the alternate answer is instead \[1/\sqrt{x^2+1} + C\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.