Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

find the derivate of exponent raised to the power x using limits

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

can anyone solve this
\[(dy/dx)_{x=x _{0}}=\lim _{\delta x \to 0}(f(x _{0}+\delta x)-f(x))/\delta x\] \[\lim \delta x \to 0 e^(x+\delta x) - e^(x)/\delta x\] \[\lim \delta x \to 0 e^x (e^(\delta x) - e^x)/\delta x \] when delta x tends to zero \[e^\delta x = 1\] \[\delta x \to 0 (1-1)/\delta x =1\] so only e^x emains
\[\begin{align} f(x)&=e^x\\ f'(x)&=\lim_{h\rightarrow0}{\frac{f(x+h)-f(x)}{h}}\\ &=\lim_{h\rightarrow0}{\frac{e^{x+h}-e^x}{h}}\\ &=\lim_{h\rightarrow0}{\frac{e^x*e^h-e^x}{h}}\\ &=\lim_{h\rightarrow0}{\frac{e^x(e^h-1)}{h}}\\ \end{align}\]now, as h tends to zero, we can write \(e^h\) as a series as follows:\[e^h=1+h+\frac{h^2}{2}+\frac{h^3}{6}+...\]therefore:\[\begin{align} f'(x)&=\lim_{h\rightarrow0}{\frac{e^x(e^h-1)}{h}}\\ &=\lim_{h\rightarrow0}{\frac{e^x(1+h+\frac{h^2}{2}+\frac{h^3}{6}+...-1)}{h}}\\ &=\lim_{h\rightarrow0}{\frac{e^x(h+\frac{h^2}{2}+\frac{h^3}{6}+...)}{h}}\\ &=\lim_{h\rightarrow0}{\frac{he^x(1+\frac{h}{2}+\frac{h^2}{6}+...)}{h}}\\ &=\lim_{h\rightarrow0}{e^x(1+\frac{h}{2}+\frac{h^2}{6}+...)}\\ &=e^x \end{align}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

there may be many answers to this question, for example if the exponent is constant then derivative is zero
if the exponent is function of x, then we can differentiate it with respect to either x or with respect to exponent it self
@tanusingh clearly states that they want to find the derivative of \(e^x\) and not \(e^{constant}\) or \(e^{g(x)}\).
ok
why have u taken e raised to the power h as a series
OK, I guess that was a little bit of /cheating/, but we can do it another way. \(e\) is defined as:\[e=\lim_{n\rightarrow\infty}{(1+\frac{1}{n})^n}\]in here, if we substitute \(n=\frac{1}{h}\) then we get:\[\begin{align} e&=\lim_{h\rightarrow 0}{(1+h)^{\frac{1}{h}}}\\ \therefore e^h&=\lim_{h\rightarrow 0}{((1+h)^{\frac{1}{h}})^h}\\ &=\lim_{h\rightarrow 0}{(1+h)}\\ &\text{using this in the above derivation we get:}\\ f'(x)&=\lim_{h\rightarrow0}{\frac{e^x(e^h-1)}{h}}\\ &=\lim_{h\rightarrow0}{\frac{e^x(1+h-1)}{h}}\\ &=\lim_{h\rightarrow0}{e^x}\\ &=e^x \end{align}\]
ya,thanxxx

Not the answer you are looking for?

Search for more explanations.

Ask your own question