• Agentjamesbond007
Using Calculus, find two numbers whose sum is 23 and whose product is a maximum. [please explain process]
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • JamesJ
You want to maximize xy, where x + y = 23. Now if x + y = 23, then y = 23 - x. Hence xy = x(23-x) Now maximize that function, which is a function of just one variable, \[ f(x) = x(23-x) \]
  • anonymous
Yes, above answer is basically how you do it. Basically you are finding the rate of change. Lastly, to maximize the function, you would derive that f(x) and set it equal to zero, then plug it back into the original equation, and compare the values.

Looking for something else?

Not the answer you are looking for? Search for more explanations.