anonymous
  • anonymous
Let f(x) be a function such that f(1)=1 and for x≥1 f'(1)=i/(x2+f2(x)). Prove that the limit f(x) exists and the limit is less than 1+(π/4)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Just want to clear up a few things. First, is that supposed to say (since you can't have an i in the derivative) \[f'(1)=\frac{1}{x^2+f(x)^2}\] Second, does what limit exist? The limit as x approaches infinity?
anonymous
  • anonymous
yes... my bad
anonymous
  • anonymous
Use e-d definition to prove limit exists? Then show what the limit actually tends to show less than 1+pi/4?

Looking for something else?

Not the answer you are looking for? Search for more explanations.