how can we calculate cos. 73 without a calculator?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

how can we calculate cos. 73 without a calculator?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

if you know that taylor polynomial for it ....
without a calculator?? :)
\[cos(x)=cos(0)-sin(0)x-\frac{cos(0)}{2!}x^2+\frac{sin(0)}{3!}x^3+\frac{cos(0)}{4!}x^4+...\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the odd powers go to zero, and the even powers go to 1/n! x^n alternating + and -
without a cal, yup :)
to clean it up: \[cos(x)=1-\frac{1}{2}x^2+\frac{1}{24}x^4-\frac{1}{720}x^6+\frac{1}{8!}x^8-\frac{1}{10!}x^{10}+...\]
and I believe the 73 needs to be turned into radians by multiplying it by pi/180
i wonder if the newton method would be adaptable?
Pen and paper allowed? or not even?
pen and paper allowed:) just no calculator
Abacus allowed?
yea :D
cos(73)=sin(17) is thats more doable
So use the Taylor's series above. You can get answers to as accurately as the abacus allows. With pen and paper, you can get to quite a good degree of accuracy. You can also use the sum/difference formulas and double and half angle formulas to get approximations, and correct the difference using linearization. The question would be more complete if it specifies how many digits of accuracy are required. The answer would be different if 2 decimal digits are required (in that case, may be even mental calculation), 4 (pen and paper), 8 digits would require an abacus.
You'll need to know how to calculate square-roots with pen and paper or by approximations, and know that pi=3.1415926535897932... cos(75)=(sqrt(6)-sqrt(4))/4 sin(75)=(sqrt(6)+sqrt(4))/4 By linearization: dcos(x)/dx=-sin(x) cos(x+d)=cos(x)+ (-sin(x))*d where d=-2 degrees in radians cos(73) =cos(75-2) =cos(75)-sin(75)*(-2pi/180) =(sqrt(6)-sqrt(4))/4 - (sqrt(6)+sqrt(4))/4 *(-2*pi/180) =0.29254 Exact value = 0.29237
sorry, corrections: cos(75)=(sqrt(6)-sqrt(2))/4 sin(75)=(sqrt(6)+sqrt(2))/4 ... =(sqrt(6)-sqrt(2))/4 - (sqrt(6)+sqrt(2))/4 *(-2*pi/180)

Not the answer you are looking for?

Search for more explanations.

Ask your own question