anonymous
  • anonymous
What are the possible number of positive real, negative real, and complex zeros of f(x) = –7x4 – 12x3 + 9x2 – 17x + 3? Answer: A)Positive Real: 1 Negative Real: 3 or 1 Complex: 2 or 0 B)Positive Real: 3 or 1 Negative Real: 2 or 0 Complex: 1 C)Positive Real: 3 or 1 Negative Real: 1 Complex: 2 or 0 D)Positive Real: 4, 2 or 0 Negative Real: 1 Complex: 0 or 1 or 3 This the last question like this, help me please:)
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
descartes rule of sign for this one http://www.purplemath.com/modules/drofsign.htm
anonymous
  • anonymous
three changes of sign in your example, \[–7x^4 – 12x^3 + 9x^2 – 17x + 3\] \[–7x^4 – 12x^3_{\text{ here }} + 9x^2_{\text{ here }} – 17x_{\text{ here }} + 3\]
anonymous
  • anonymous
so possible positive roots: 3 or 1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[f(-x) = –7(-x)^4 – 12(-x)^3 + 9(-x)^2 – 17(-x) + 3\] \[f(-x) = –7x^4 + 12x^3 + 9x^2 + 17x + 3\] this has one change in sign
anonymous
  • anonymous
so one possible negative root. degree is 4, so there are 4 roots in total Positive Real: 3 or 1 Negative Real: 1 Complex: 2 or 0
anonymous
  • anonymous
Okay thank you very much!:))
anonymous
  • anonymous
yw btw the link i sent has a brief clear explanation with examples, if you have to take a test on this it is easy enough with a little practice
anonymous
  • anonymous
okay thank you, i am understanding bits and pieces of this lesson:)

Looking for something else?

Not the answer you are looking for? Search for more explanations.