integrate tan^3(x/4)*sec^2(x/4) from-2/3pi to pi help with the steps plz.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

integrate tan^3(x/4)*sec^2(x/4) from-2/3pi to pi help with the steps plz.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

since sec^2 is the derivaive of tan, this is a simple enough arrangement: \[\int f(u)du\]
i thinkk you might be off by a 4 tho
x/4 pops out a spurious little 1/4 that missing

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

is -2pi/3 to pi = to pi to -2pi/3 ???
then given the interval [a,b] you work it out: F(b)-F(a)
|dw:1326817635699:dw|
\[[tan^4(\frac{1}{4}x)]'=\frac{1}{4}tan^3(\frac{1}{4}x)sec^2(\frac{1}{4}x)\] so we have to multiply thru by 4 to begin with
|dw:1326817802065:dw|
\[u=\frac{x}{4}\to du=\frac{dx}{4}\to4du=dx\]\[\int_0}{|dw:1326817852162:dw|
\[\Pi ^{2}\div9{(65\Pi ^{2}/9)-26)}\] i got this ans. s this correct??i
lol, I just derived tan^4(x/4) and got a spurious 1/4 so that cant be right
hmmm, im off by something
wolf agrees with turing
oh yeah, the 4 pops out to get rid of the 1/4 lol
derivative of (x/4) i think u miss it during derivative
yep, one comes out on top and bottom, so they cancel
a was using an abacus ;)
lol
|dw:1326818150512:dw| i did this process n got that ans
is the problem\[\int_{\frac{-2\pi}{3}}^{\pi}\tan^3(\frac x4)\sec^2(\frac x4)dx\]?
yes
\[\int_{\frac{-2\pi}{3}}^{\pi}\tan^3(\frac x4)\sec^2(\frac x4)dx\]\[u=\frac x4\to du=\frac{dx}{4}\to4du=dx\]so...\[\int_{\frac{-2\pi}{3}}^{\pi}\tan^3(\frac x4)\sec^2(\frac x4)dx=4\int_{\frac{-\pi}{6}}^{\frac{\pi}{4}}\tan^3u\sec^2udu=4(\frac14\tan^4(\frac x4))|_{\frac{-2\pi}{3}}^{\pi}\]\[=\tan^4(\frac x4)|_{\frac{-2\pi}{3}}^{\pi}\]evaluate...
\[\text{Tan}\left[\frac{\pi }{4}\right]^4-\text{Tan}\left[\frac{\frac{-2}{3}\pi }{4}\right]^4=\frac{8}{9} \]

Not the answer you are looking for?

Search for more explanations.

Ask your own question