anonymous
  • anonymous
the derivative of 2x^2 I need to know how to solve this using the derivative as a function... (using limits)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
\[\lim_{h->0}\frac{f(x+h)-f(x)}{h}\]
anonymous
  • anonymous
I already know that formula, i need to know how to use it....
amistre64
  • amistre64
\[\lim\frac{2(x+h)^2-2x^2}{h}\] \[\lim\frac{2(x^2+2xh+h^2)-2x^2}{h}\] \[\lim\frac{2x^2+4xh+2h^2-2x^2}{h}\] \[\lim\frac{\cancel{2x^2}+4xh+2h^2\cancel{-2x^2}}{h}\] \[\lim\frac{4xh}{h}+\frac{2h^2}{h}\] \[\lim\frac{4x}{1}+\frac{2h}{1}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
if you know the formula, you know how to use it :/
amistre64
  • amistre64
now, when h=0; 4x+2h = 4x
amistre64
  • amistre64
when I first did these the "x" part of the function confused me a bit since they used x as part of the substituions
amistre64
  • amistre64
f(x+h) should be written better as say: f(a+h) maybe so that you know to replace "x" by whats in the ( )
anonymous
  • anonymous
ok, now i get it thanks alot
amistre64
  • amistre64
youre welcome, and good luck :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.