anonymous
  • anonymous
Let \(f\) be a function satisfying \(f(x+y) = f(x) + f(y) \forall x,y\) and if \(f(x) = x^2 g(x)\) where \(g(x)\) is a continuous function, then find \(f'(x)\).
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
i am going to make a guess, that \[f'(x)=c\] some constant. not sure what that has to do with \[f(x)=x^2g(x)\] but if i recall correctly the only function satisfying the first condition is \[f(x)=cx\]
anonymous
  • anonymous
\[f'(x)=2xg(x)+x^2g'(x)\]
anonymous
  • anonymous
@zed that is true for any f, right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i don't think there are any functions that satisfy \[f(x+y)=f(x)+f(y)\] other than constant multiples
anonymous
  • anonymous
Here, these are the options 1. g'(x) 2. g(0) 3. g(0) + g'(x) 3. 0
anonymous
  • anonymous
multiple choice?
Zarkon
  • Zarkon
looks like zero to me
anonymous
  • anonymous
yeah, but i am clueless
anonymous
  • anonymous
really? why. i am fairly certain \[f'(x)=c\] a constant
Zarkon
  • Zarkon
us the definition of the derivative
Zarkon
  • Zarkon
*use
Zarkon
  • Zarkon
(f(x+h)-f(x))/h (f(x)+f(h)-f(x))/h =f(h)/h
Zarkon
  • Zarkon
\[f(h)=h^2g(h)\]
Zarkon
  • Zarkon
\[\frac{h^2g(h)}{h}=hg(h)\] take limit as h goes to zero...use squeeze theorem

Looking for something else?

Not the answer you are looking for? Search for more explanations.