anonymous
  • anonymous
what would the range be on f(x) = -4 l x+7 l ?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
TuringTest
  • TuringTest
what is the range on f(x)=|x+7| ?
anonymous
  • anonymous
i think i'm not sure somehow my teacher got (- infinity, 0] and i have no idea what he did
TuringTest
  • TuringTest
what is the range of f(x)=|anything| ? what values can an absolute value take on?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
im sorry i'm so confused i know the domain is all reals because nothing limits it but i also thought hte range would be like all reals as well yet he gave us a diff answer so im unsure what to do
TuringTest
  • TuringTest
can |x| be negative?
anonymous
  • anonymous
noooo
TuringTest
  • TuringTest
so then the range is not all reals, is it? it can't be negative, the least it can be is zero. It can be as big as you want though by putting in larger and larger x. so the range of f(x)=|x+7| is [0,infty) , agreed?
anonymous
  • anonymous
well even if x is a negative number wouldnt it not matter because the absolute value makes it postivie?
TuringTest
  • TuringTest
right, so that means it \[|x|\ge0\]like I said, the LEAST it can be is zero. Hence the range is from zero to positive infinity\[[0,\infty)\] So far so good ?
anonymous
  • anonymous
OH okay gotcha now
TuringTest
  • TuringTest
now what about\[f(x)=-|x|\]if |x| is always positive, then -|x| is always negative. The MOST it can be is zero. We can make f(x) very negative (as negative as we want in fact) by putting in very large negative or positive x. Hence the range is\[(-\infty,0]\](I hope you see that the 7 and 4 change nothing, only the fact that the 4 is negative matters) Make sense now?
anonymous
  • anonymous
yes it does thank you so much you're a life saver
TuringTest
  • TuringTest
happy to help :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.