Let * be a binary operation on the set {0, 1, 2, 3, 4, 5}, defined as a *b={(a+b, if a+b <6 & a+b-6,if a+b≥6) Show that zero is the identity element for this operation and each element a ≠ 0 of the set is invertible with 6 – a being the inverse of a.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Let * be a binary operation on the set {0, 1, 2, 3, 4, 5}, defined as a *b={(a+b, if a+b <6 & a+b-6,if a+b≥6) Show that zero is the identity element for this operation and each element a ≠ 0 of the set is invertible with 6 – a being the inverse of a.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Just show that a*0=0*a=a for all a in the set {0,1,2,3,4,5} for the first part. For the second part, show that (6-a)*a=a*(6-a)=0.
Also note that since you cannot assume, a priori, that this operation is commutative, you must show both a*0=0 and 0*a=0 (for instance).
Ok tell me if Im doing it right

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

a*0=a+0=a 0*a=0+a=a a*0=0*a=a
0 is the identity element
Looks good so far
(proof of commutativity is straightforward since a [+] b is either a+b=b+a or else a [+] b is a+b-6=b+a-6.) let's see a+0 is always less than 6 so a[+]0 = 0[+]a = (a+0) = a, yep
You may want to note that in each of those examples, clearly a+0 is less than 6
Yes ,what about the second part ?
@Broken: I know, but when people are first learning things like relation theory and algebra, I find it best when they don't dive in automatically assuming things are as nice as they are used to! (ie. commutative, have inverses, etc.)
Just show that (6-a)*a=a*(6-a)=0 for all a in {0,1,2,3,4,5}
(6-a)*a=6-a+a=6 ? what did i do wrong?
ok 6-a+a-6=0 :)
Mhm, very good. Thus, you can conclude that 0 is the identity element for this operation (part 1) and that all elements have inverses (part 2).
but how do i know if a+b <6 or a+b≥6
and sorry how is a-6 inverse of a?
Well, in part 1, you know that all of them must be less than 6, since you are adding 0 to a number less than 6. For part 2, clearly a and 6-a add up to 6 which is greater than or equal to 6. I don't understand your question, I never said a-6 is the inverse of a, since 6-a is the inverse of a.
yes sorry i meant 6-a
Since (6-a)*a=a*(6-a)=0, which is the identity element, then a and 6-a are considered inverses to each other. When dealing with operations other than standard addition or multiplication on the reals, inverse does not always mean either negative or reciprocal like you are used to. All an inverse of an element "a" is, is another element "b" such that a*b=0, which 0 is the identity element.
Ok Thank You I appreciate your help , you deserve a medal ;)
No problem, always glad to help :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question