Ex cause me, how can I solve this equations ? 3^(x-1)= 5^(x-2)

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Ex cause me, how can I solve this equations ? 3^(x-1)= 5^(x-2)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

did you see your previous post? Are you going to solve by graphing?
start with \[(x-1)\ln(3)=(x-2)\ln(5)\] and then do a raft of algebra
\[\ln(3)x-\ln(3)=\ln(5)x-2\ln(5)\] \[ln(3)x-\ln(5)x=\ln(3)-2\ln(5)\] \[(\ln(3)-\ln(5))x=\ln(3)-2\ln(5)\] \[x=\frac{\ln(3)-2\ln(5)}{\ln(3)-\ln(5)}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

check my algebra because is is early and i could have made a mistake. also don't fret if this is not the answer in the back of the book because there are many ways to write this using the properties of the log
thank you.
you will also notice that this is an answer only a math teacher could love, because it doesn't really tell you what the number is at all, just writes in terms of logs. if you want an actual decimal approximation, do what meverette suggested and graph
yw

Not the answer you are looking for?

Search for more explanations.

Ask your own question