Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Describe the usefulness of the conjugate and its effects on other complex numbers?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
i got it hold on
The conjugate it's used to solve operations with complex numbers.Conjugation of a complex number describes an axial symmetry of the complex plane. To conjugate a complex number, reflect its position through. Conjugation of a complex number describes an axial symmetry of the complex plane. To conjugate a complex number, reflect its position through the real axis. This geometric significance is used a lot
. In mathematics, complex conjugates are a pair of complex numbers

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

done
Any complex number may be written as \[a+ib\] where \[a,b \in \mathbb{R}\] The complex conjugate of \[a+ib\] is \[a-ib\] The effect of the conjugate can be seen under the various operations: \[a+ib - (a-ib) = 2ib \in \mathbb{C}\] \[a+ib + (a-ib) = 2a \in \mathbb{R}\] \[(a+ib)(a-ib) = a^2 +b^2 \in \mathbb{R}\] \[\frac{a+ib}{a-ib} = \frac{(a+ib)^2}{(a-ib)(a+ib)} = \frac{a^2+2abi-b^2}{a^2+b^2} = \frac{1}{a^2+b^2}([a^2-b^2] + i[2ab])\]
Notice that \[\sqrt{(a+ib)(a-ib)} = \sqrt{a^2+b^2} = |a+ib|\] (the modulus)
A complex multiplied by its conjugate is reduced to a real no. So, it helps while rationalizing, especially the denominators.

Not the answer you are looking for?

Search for more explanations.

Ask your own question