Curry
  • Curry
sigma
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Curry
  • Curry
\[\sum_{x=1}^{25}\] K^2 -3k +4 what is the formula to solve if u dont have calculator
Curry
  • Curry
please help
anonymous
  • anonymous
\[\sum_{x=1}^{25}k^2-3\sum_{x=1}^{25}k+4\sum_{x=1}^{25}1\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
imran please go ahead, i have to get back to work
anonymous
  • anonymous
but this one is pretty easy \[4\sum_{k=1}^{25}1=4\times 25=100\]
anonymous
  • anonymous
sum 1 to n of (1) is equal to n sum 1 to n of (i) is equal to n(n+1)/2 sum 1 to n of (i^2) is equal to n(n+1)(2n+1)/6 um i think.
anonymous
  • anonymous
yes, agreed^
anonymous
  • anonymous
@curry you got this?
anonymous
  • anonymous
\[\sum_{k=1}^{n}k=\frac{n(n+1)}{2}\] so \[-3\sum_{k=1}^{25}k=-3\times \frac{25\times 26}{2}\]
Curry
  • Curry
kind a
anonymous
  • anonymous
\[\sum_{k=1}^nk^2=\frac{n(n+1)(2n+1)}{6}\] so \[\sum_{k=1}^{25}k^2=\frac{25(26)(51)}{6}\]
anonymous
  • anonymous
now you have all the numbers you need, grind it out with a calculator
anonymous
  • anonymous
should get 4650 if you do it right http://www.wolframalpha.com/input/?i=sum+k+%3D+1+to+25+%28k^2-3k%2B4%29

Looking for something else?

Not the answer you are looking for? Search for more explanations.