The distance of point (-1, 4) and the line 4x – 2y = 4 is ___.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

The distance of point (-1, 4) and the line 4x – 2y = 4 is ___.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

8/sqart 5
how did you do it?
\[8/\sqrt{5}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

how?
Please explain.
wait, wait
4x-2y-4=0 put the values of x and y in the LHS then take the modulus of that value and divide it by sqrt of sum of the squares of coeffients of x and y. i think, u know the proof why we do that
sorry, co-efficients ^^
Sorry but I didn't get it.
since the distance from a point to a line is along a perpendiular line; if we can construct a perpendicular line equation that goes thru the given point we can use a system of equations to determine the point where they meet. then use the distance formula to determine the distance from the meeting point and the given point.
|dw:1326977726363:dw|
one trick to a perp line is to swap coeffs and negate one of them: 4x – 2y = 4 perp line: 2x + 4y = n calibrate with the given point (-1,4): 2(-1) + 4(4) = n -2 + 16 = n = 14 perp line: 2x + 4y = 14
system of equations gives us: 4x - 2y = 4 2x + 4y = 14 ; *-2 4x - 2y = 4 -4x -8y = -28 ------------ -10y = -24 y = 24/10 = 12/5 .............................................. 4x - 2y = 4 ;*2 2x + 4y = 14 8x - 4y = 8 2x + 4y = 14 ------------ 10x = 22 x = 22/10 = 11/5 ................................ we want the distance from (-1,4) to (12/5, 11/5) if i did that right
I think this is the explanation that I am looking for.
could I use the formula d=(/Ax1+By1+C/)/sqrtof(a^2+B^2) I think this is the formula for this. :)
\[dist.=\sqrt{a^2+b^2}\] is a compact form of the distance formula yes; personally I just subtract the points, square them, add them and sqrt them
( 12/5, 11/5) - ( -5/5, 20/5) --------------- (17/5 , -9/5) ^2 (289+81)/25 sqrt(370)/5
that should simplify to 8/sqrt(5)
but then some texts hate a sqrt in the denom; so maybe we rewrite it: \(cfrac{8}{5}\sqrt{5}\)
well that dint format good on my screen lol
\[\frac{8\sqrt{5}}{5}\] or \[\frac{8}{5}\sqrt{5}\]
\[ d= (\left| Ax _{1}+Bx _{2}+C \right|)/\sqrt{A ^{2}+B ^{2}}\] This is what my teacher taught us :)
that might work :) ive never quite seen it like that tho.

Not the answer you are looking for?

Search for more explanations.

Ask your own question