anonymous
  • anonymous
Please see attached.
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
Please see attached.
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
1 Attachment
anonymous
  • anonymous
Question 1 or 2?
anonymous
  • anonymous
\[arc length = 2\pi r(\frac{C}{360})\] where r is the radius and C is the central angle of the arc in degrees

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
question 2
anonymous
  • anonymous
\[sectorarea=\pi r^2 (\frac{C}{360})\]
anonymous
  • anonymous
Since you know r and C of the 4 different sectors, work them out individually and then add the answers together to get the total area :)
anonymous
  • anonymous
but each side of the sectors has different lengths
anonymous
  • anonymous
you use the values that involve that sector. for example the sector with the 120 angle with be a side of OB=3cm as a value for r
anonymous
  • anonymous
for the 45 degree one the sides will be OC=5cm
anonymous
  • anonymous
the 60 degree will be )A=2cm and the last one (135 degree) is OD=3cm
anonymous
  • anonymous
does this make more sense? :D
anonymous
  • anonymous
is OC part of sector 120 degree or 45 degree???
anonymous
  • anonymous
OC is only a part of the 45 degree sector
anonymous
  • anonymous
I think I need to read up on sectors.
anonymous
  • anonymous
thanks for your help
anonymous
  • anonymous
I think it might have to do with the diagram, it is a little confusing. No worries (:

Looking for something else?

Not the answer you are looking for? Search for more explanations.