anti-derivative (1)/x^2dx

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

anti-derivative (1)/x^2dx

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\int x^{-2}\ dx\]
to derive a power we multiply and subtract 1, to undo that we add 1 and divide
So would my answer be (-1/3x^3)?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

it would; +C
opps, read it wrong: -1/3 x^-3
+C ....
\[\int x^{-2}\ dx=-\frac{1}{1}x^{-1}=-\frac{1}{x}+C\] thats better
okay thanks. I need to know how to type another problem but I do not know how to type it in integral notation. COuld you explain how to do that please?
I gotta get to class at the moment; but good luck :)
ok well later Thanks. :)
use the power rule backwards
\[\frac{d}{dx}x^n=nx^{n-1}\] \[\int x^n dx=\frac{x^{n+1}}{n+1}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question