• anonymous
A rock is dropped into a well. The sound of the splash is heard 2.40s after the rock is released. How far below the top of the well is the surface of the water? If the travel time for sound is neglected, what percent error does this introduce to the depth of the well?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • JamesJ
Let he depth be d. Then the time taken for the rock to reach d is given by the equation \[ d = \frac{1}{2}gt_1^2 \] then the time for the sound to return up the well is given by \[ v = d/t_2 \] where \( v \) is the speed of sound. You also know that \[ t_1 + t_2 = 2.6 \ sec \] Now use those three equations to find d.

Looking for something else?

Not the answer you are looking for? Search for more explanations.