anonymous
  • anonymous
what does it mean when two function are orthagonal?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
amistre64
  • amistre64
f(x).g(x) = 0 perhaps?
anonymous
  • anonymous
oh, so for every value of x , the dot product is zero?
amistre64
  • amistre64
http://www.wolframalpha.com/input/?i=orthogonal+functions

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
thats my gut feeling about it, but im sure it needs to be refined
anonymous
  • anonymous
ok , thank
amistre64
  • amistre64
http://www.math.odu.edu/~jhh/samp2.PDF this looks readable as well
amistre64
  • amistre64
i recall that polynomials are vectors spaces, so a dot product on the coeffs would seem reasonable to me; but an inner product might be more all encompassing for functions in general

Looking for something else?

Not the answer you are looking for? Search for more explanations.