the sum of the digits of a two-digit number is 12. when the digits are reversed, the new number is 18 less than the original number. check your answer. HELP~

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

the sum of the digits of a two-digit number is 12. when the digits are reversed, the new number is 18 less than the original number. check your answer. HELP~

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

If the number has the form \(a_0a_1\), then we can make the system: \[a_0+a_1=12\] \[10a_0+a_1=10a_1+a_0+18\]
hola turningtest goodnight people
57,75

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I'm lost :c
...this exhibits my love/hate relationship with Diophantine equations. Nice formulation Mr. Math :)
Let me explain. You have a number of two digits, call it \(a_0a_1\), where \(a_0\) is the 10's digit and \(a_1\) is the 1's digit. Now we're given that the sum of the two digits is 12. We can write that as \(a_0+a_1=12\). Following so far?
ohh yeah, ohkay keep going..
Good. The second information we are given is that when reversing the digits [that's writing it as \(a_1a_0\)], the new number is 18 less than the original number. First you need to notice that if the original number is x, we can write \(x=10a_0+a_1\). Call the new number y, then \(y=10a_1+a_0\). Hence the second equation of the system is: \[10a_0+a_1=10a_1+a_0+18.\]
All you're left to do here is to solve the system for \(a_0\) and \(a_1\).
Can you do the steps and explain to me please? I seem to learn better by looking at the steps done.
\[a_0+a_1=12\to a_0=12-a_1\]\[10a_0+a_1=10a_1+a_0+18\to9a_0-9a_1=18\]multiply first eqn by 9\[9a_0+9a_1=108\]\[9a_0-9a_1=18\]add these together...\[18a_0=126\to a_0=7\]now we can find the other number with the formula for a_1 on the first line\[a_0+a_1=12\to a_1=12-a_0=12-7=5\]hence \[a_0=7\]\[a_1=5\]so the numbers are\[57,75\]as UnkleRhaukus said
the numbers are 57, and 75 but which is the original?
the original is 75

Not the answer you are looking for?

Search for more explanations.

Ask your own question