• anonymous
Radio stations are usually identified bytheir frequency. One radio station in the middle of the FM band hasa frequency of 99.0 MHz. What is itswavelength?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
When dealing with mHz, the short formula is 300/F in mHz. 300/99
  • JamesJ
If a wave has wavelength \( \lambda \) and frequency \( f \), then its speed \( v \) is given by \[ v = f \lambda \] You can see that because by definition of frequency, in one second \( f \) entire waves go by. How long are those waves? \( \lambda \). Hence in one second the wave travels \( f \lambda \). Now, a radio wave travels at the speed of light, so \( v = c = 3.00 \times 10^{10} \ m/s\). Hence given your frequency of \( f = 99 \times 10^3 \ Hz \), the wavelength is \[ \lambda = c/f \]
  • radar
The given frequency is not;\[f=99\times10^{3}\]but is given as\[f =99\times10^{6}\]Hz of course/

Looking for something else?

Not the answer you are looking for? Search for more explanations.