Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Solve cos^(2)(x) - 3sin(x) = 3 for x on [0, 2pi] So I have simplified the function down to (-sin(x) - 2)(sin(x) + 1) = 0 or (-sin(x) -1)(sin(x) + 2) = 0 I have determined x = 3pi/2 as sin(3pi/2) = 1/2 Is that the only value possible As I don't think there is a value in the domain of this function that I could use to solve (sin(x) + 2) or (-sin(x) - 2) I could imput arcsin(2) but would that be wrong and if so why?

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
because the value of sin is at most 1. SO arcsin(2) is undefined. So the solutions only comes from -sin x -1 =0
sin(3pi/2) = -1
made a typo. so I'm correct.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yes \(e\pi/2\) is the only answer
so I should always adhere to the range of the unit circle when dealing with trig functions?
I mean \(3\pi/2\)
yeah I was wondering lol

Not the answer you are looking for?

Search for more explanations.

Ask your own question