• anonymous
please help guys A= [0 0 -2;1 2 1;1 0 3] find a matrix P diagonazlizes A. what is A^30
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • jamiebookeater
I got my questions answered at in under 10 minutes. Go to now for free help!
  • asnaseer
If \(D\) is the diagonalization of \(A\), then we can write:\[A=PDP^{-1}\]where:\[P=\left[\begin{matrix}e_1 & e_2 & e_3\end{matrix}\right]\]and \(e_i\) represents the i'th eigenvector of \(A\). You first need to find the eigenvalues of A using:\[\left|A-\lambda I\right|=0\]solving this should give you the three eigenvalues of \(A\), \(\lambda_1, \lambda_2, \lambda_3\). Then use each of the eigenvalues to solve:\[(A-\lambda I)x=0\]this should give you the three eigenvectors \(e_1, e_2, e_3\). Hence you have found \(P\). Ti find \(A^{30}\) you can use the property:\[A^n=(PDP^{-1})^n=PDP^{-1}*PDP^{-1}*PDP^{-1}*...\]and note that on either side of the internal multiplications you have \(P^{-1}*P=I\) and therefore these collapse to give:\[A^n=PD^nP^{-1}\]and calculating \(D^n\) for the diagonal matrix \(D\) is trivial.

Looking for something else?

Not the answer you are looking for? Search for more explanations.