anonymous
  • anonymous
Without graphing, determine whether the graphs of the equations are identical lines, parallel lines, or lines intersecting at a single point. Choose one answer. a. parallel lines b. identical lines c. lines intersecting at a single point
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
can you post a screenshot?
ash2326
  • ash2326
yeah attachement is directing to a login page
anonymous
  • anonymous
Sorry! =)
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
You can re-arrange and compare slopes e.g. 6x - y = 25 --> y = 6x-25 x + 5y =30 --> y =-(1/5)x+6 The slopes are different so the lines will intersect.
anonymous
  • anonymous
\[(1) = 6x-y=25\]\[(2)= x+5y=30\] Multiplying (1) by 5 and adding it with (2), we get \[5 \times (6x-y)+x+5y=5 \times 25 + 30\]\[30x - 5y + x + 5y = 125 + 30\]\[31x=155\]\[x=155/31\]\[y=6 \times 155/31 - 25\] So we now know that the lines interset and one and only point.

Looking for something else?

Not the answer you are looking for? Search for more explanations.