anonymous
  • anonymous
Consider the two points(1,-1) and(-3,-5) . The distance between them is: ? The x co-ordinate of the midpoint of the line segment that joins them is: ? The y co-ordinate of the midpoint of the line segment that joins them is?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
the distance between them is the length of the vector that comes from the difference between the coordinates. |dw:1327180152002:dw| the midpoint is the point that is the middle of that vector. |dw:1327180173361:dw| when you have that vector you devide its length by 2 to get half it's length. then depending on which direction your vector has (down left or up right) you place it on the (second point, first point) respectively and then the end of that vector has the coordinates of the midpoint of the line segment
anonymous
  • anonymous
Ok thanks, so how can I tell which direction? Because it only gives me the coordinates...
anonymous
  • anonymous
when you create any vector you can assume it starts at the origin 0,0 "you can paste them together and stuff but it sort of doesn't matter, it just an arrow with a particular length in a particular direction" like say call your vectors u and v, you can do u+v|dw:1327180790595:dw| or v+u|dw:1327180817392:dw| and that vector is the same sorta :P

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Oh ok, thanks, I just used the midpoint formula to solve it, and also the distance formula...
radar
  • radar
The first requirement was the distance of the line segment. Use the distance formula:\[d=\sqrt{(1-(-3))^{2}+(-1-(-5))^{2}}\] \[d=\sqrt{(\Delta x)^{2}+(\Delta y)^{2}}\]\[d \sqrt{4^{2}+4^{2}}=\sqrt{32}=4\sqrt{2}\]
radar
  • radar
The second requirement is to find the x co-ordinate of the midpoint of the line segment that joins them is: ? This is the midpoint of distance of the c coordinate, the x values are +1 and -3. the midpoint is 1/2 the distance or -1 (-1, y)
radar
  • radar
The third requirement was:The y co-ordinate of the midpoint of the line segment that joins them is? Treat this similarly. The y distance is 4 take half (2) and locate the point down from the -1 or the point is -3. Midpoint is (-1,-3)
radar
  • radar
that completes the problem, good luck.

Looking for something else?

Not the answer you are looking for? Search for more explanations.