anonymous
  • anonymous
ABCD is a rectangle with AD=10. If the shaded area is 100 units2, then what is the shortest distance between the two semicircle?
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
|dw:1327187342839:dw|
Mertsj
  • Mertsj
If AD = 10, the radius of the semicircle is 5 and the area of the entire circle is 25pi. So the area of the rectangle must be 100 + 25 pi and so the length of the rectangle is the area divided by the width which is given to be 10. So the length is 10+2.5 pi. Now if we subtract 10 (the radius of each semicircle) from that, we have 2.5 pi as the shortest distance between the two semicircles.
anonymous
  • anonymous
Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Mertsj
  • Mertsj
yw

Looking for something else?

Not the answer you are looking for? Search for more explanations.