please, please help! how can i show that\[\frac{|a+b|}{(ab)^2}\leq\frac{1}{k^3}\]when \(a,b,k\in\mathbb{R}\) and \(|a|,|b|>k>0\)?

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

please, please help! how can i show that\[\frac{|a+b|}{(ab)^2}\leq\frac{1}{k^3}\]when \(a,b,k\in\mathbb{R}\) and \(|a|,|b|>k>0\)?

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

multiply \[ab ^{2}\] on both sides?
For the denominator: If both a and b are positive, k is definitely greater than the absolute values of both. If one factor is neg. and the other is pos., it still doesn't matter because the product is being squared and will be pos and greater than both in the end. If both a and b are neg., the product is pos. and k is still greater.
how is k greater than the absolute values of both? It says |a| and |b| are > k.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

oh, oops sorry
I think this isn’t necessarily true. For example take \(a=b>0\); Then \(\frac{|a+b|}{(ab)^2}=\frac2{a^3}\), which is not \(\le\frac1{k^3}\) for \(a\) is just a little bigger than \(k\).
The problem statement is correct? It's not |a| > |b| > k > 0?
Nvm. Though I don't think a=b is a counter example though. 2/a^3 should be <= 1/k^3
Maybe use proof by contradiction. Assume the inequality is false and take a=b > 2*k > 0. Then: (a+a)/(a*a)^2 > 1/k^3 2a/a^4 > 1/k^3 2/a^3 > 1/k^3 Multiply both sides by (1/2). So: 1/a^3 > 1/2k^3 But this isn't true for all |a|,|b|, > k > 0 since 1/a^3 is certainly less than 1/2k^3 in our example which is a contradiction therefore the original equality must be true.
Sorry a few re-posts to fix typos.

Not the answer you are looking for?

Search for more explanations.

Ask your own question