anonymous
  • anonymous
In the diagram, the circle is inscribed in the square. This means that the circle and the square share points S, T, U, and V, and the width of the square is exactly equal to the diameter pf the circle. What percentage of the line segment XY is outside the circle?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1327192015451:dw|
dumbcow
  • dumbcow
The diameter is 2r The length of the side of the square is also 2r XY = sqrt(2)*2r length outside circle = (sqrt(2)*2r - 2r) = 2r(sqrt(2) -1) percent outside circle = 2r(sqrt(2) -1) / sqrt(2)*2r = (sqrt2 -1)/sqrt2 = 0.29
anonymous
  • anonymous
ok, Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.