anonymous
  • anonymous
Is the line through points P(–8, –10) and Q(–5, –12) perpendicular to the line through points R(9, –6) and S(17, –5)? Explain.
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Hero
  • Hero
no, because when the lines intersect they should intersect at 90 degree angles. They do not.
anonymous
  • anonymous
\[\tan \theta=\frac{m_1-m_2}{1+m_1m_2}\] \[m=\frac{y_2-y_1}{x_2-x_1}\] \[m_1=\frac{-5-(-6)}{17-9}=1/8\] \[m_2=\frac{-12-(-10)}{-5-(-8)}=-2/3\] \[\tan \theta=\frac{-2/3-1/8}{1+(-2/3)*1/8)}=19/22\] \[\theta=\tan^{-1} (19/22)\] \[\theta=40.8\]
Hero
  • Hero
talk about taking it further than necessary

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1327216716356:dw|
anonymous
  • anonymous
the shortest way is that, if they are perpendicular then multiply of their slop must be -1 if \[ \theta=90 \] then this must \[m_1*m_2=-1\] and we know that \[m_1*m_2=-1/12\] hence \[\theta\] cannot equal to 90

Looking for something else?

Not the answer you are looking for? Search for more explanations.